
Oracle ADF 11g

Contents

1. ADF Basics
1.1-1. Introduction to Oracle ADF.
1.1-2. ADF history.
1.1-3. ADF architecture.
1.1-4. ADF features.

2. ADF Business components

2.1-1 Introduction to ADF BC.
2.1-2 Application Architecture.
2.1-3 Entity Objet (EO).
2.1-4 Updatable View Object (Entity based VO).
2.1-5 Read only View Object (Query based VO).
2.1-6 Application Module (AM).
2.1-7 Types of VO Attributes.
2.1-8 LOV (List of Values) and View Accessor.
2.1-9 View Criteria.
2.2-1 Custom methods in AM.

3. ADF Bindings
 3.1-1 Introduction to ADF Bindings.
 3.1-2 Types of Bindings.
 3.1-3 Binding Context.

4. ADF Task flows

4.1-1 Introduction to ADF TFs.
4.1-2 TF activities.
4.1-3 TF Features.
4.1-4 TF Template.
4.1-5 TF Data control scopes.
4.1-6 TF Transaction options.
4.1-7 Run TF and Run TF as a dialog.
4.1-8 Dynamic Region.
4.1-9 Task Flow Initializers/Finalizers.
4.2-1 Managed beans in TF.
4.2-2 Train components in TF.
4.2-3 TF Input parameters.
4.2-4 BTF vs UBTF

PART –II (not completed yet)

5. ADF faces components
6. Security
7. MDS
8. Deployment

1.1-1 Introduction to Oracle ADF

ADF stands for “Application Development Framework". With ADF we can implement an
end to end, Secure, High performance application (of any type) in quick time with the help
of several Built-In components implemented (in Core Java and XML). Oracle ADF is not a
freeware. The clients should have WebLogic server license to deploy the ADF applications on
it.

1.1-2 ADF history

OAF: Oracle starts with a framework called “Oracle Application Framework (OAF)” for
providing a sophisticated user interface for all its customers. OAF have lot of performance issues
because of technology stacks used for developing this framework. OAF has limited features with the
name of “BC4J” instead of Business components. And there are no Task flows in OAF to support the
GUI based navigation model. OAF completely depends upon Java coding and some configuration
files to provide the navigation model (controller layer). Compare to Java/J2EE and OAF has very less
coding. With OAF we have few performance issues as the developers add considerable amount of
code.

ADF 10g:-To resolve the issues in OAF, Oracle implemented a framework called “ADF 10g”.
In ADF 10g we have to include java code instead of ADF BC to form a Business Layer. ADF 10g
contains ADF task flows to support the GUI based navigation model. Still ADF 10g have lot of
performance issues because of lot of java code needs to be written for providing a business layer.

1.1-3 ADF architecture

Oracle ADF 11g:- Oracle came up with a framework called ADF11g and it is resolved all the
performance issues identified in OAF and ADF 10g. Oracle ADF provides ADF Business components 1

(ADF BC) to form a Business Layer. So that our ADF application can interact with any relational
Database and perform the basic Data Base operations (CURD Operations). Oracle ADF provides ADF
Bindings 2 to form a Model Layer so that our ADF Application has a sophisticated interface to provide
the effective communication between top layers (View-Controller Layer) and lower layer (Business
layer).

Oracle ADF provides ADF Task Flows 3 to form a Controller Layer. So that our ADF
application can have an effective Navigation Model. ADF Task flows are also called as ADF page flows

or ADF Controller. Oracle ADF provides ADF Faces components 4 to provide an interactive user
interface (Web pages). Oracle ADF provides Declarative Security 5 Model and Declarative
Deployment 6. Oracle ADF provides an environment called to hold the runtime changes permanently
with the help of metadata services (MDS 7).

Oracle ADF is a technology in a Fusion Middleware Stack (FMWs). ADF interacts with
Universal Content Management (UCM) server for maintaining various types of content (text, image,
audio and video content) and interacts with WebCenter Portal for Personalization’s, Customizations,
Declarative Navigation Model, Security, Social Networking and Productivity Services. ADF interacts
with SOA for supporting various types of clients. ADF interacts with BPM for supporting the BPM
System by providing required information.

Prerequisites to learn ADF: Knowledge/Experience on Core Java and SQL queries is mandatory.
Exposure on Pl/SQL is an added advantage.

IDE: ADF applications are implemented either in Jdeveloper IDE or Eclipse IDE.

1.1-4 ADF features

• ADF applications are Secure as the ADF is directly implemented on Java and inherits all the
features of it.

• ADF promotes Declarative development. The Java/XML codes automatically generated with
respect to front end changes (drag/drop).

• ADF supports Rapid application development due to the incredible number of declarative
components available and are scattered across all the layers.

• ADF adds value to Java. ADF is not an advanced Java or extension to Java. It is a simple
framework implemented on Java platform.

• ADF enables developers to focus much on client requirements and not low level things like
coding, complexity and team size.

• ADF follows a best design pattern called MVC to develop ADF applications. The basic Model
layer is classified into two: Business layer (ADF BC) and Model layer (ADF bindings).

The Controller layer (ADF task flows) and View layer (ADF faces components) are same.

2. ADF Business Components

2.1-1 Introduction to ADF BC

Oracle ADF provides ADF BC to form a Business Layer so that our ADF application can
perform below operations declaratively:

• Establish a connection to Data Source.

• Create a new record into the Database.

• Perform delete and update operations after retrieve.

• Perform only retrieve (Read only) operation.

• Provide Transaction Support (Commit/Rollback).

• Close the Connections.

ADF BC is responsible for performing the all above operations with the help of below Business
components or Business Objects.

• EO (Entity Object) :-

EO is created on top of a single Table/View/Synonym to support the updatable view
object to perform all the CURD operations.

• UVO (Updatable View Object) :-

It is a query created on one or more Entity Objects to perform the basic CURD
operations.

• RVO (Read-only View Object) :-

It is a query created directly on one or more Database tables with the help of joins
to perform only retrieve operations (Select or Read-only). We can’t perform DML
operations with the help of RVO.

• AM (Application Module) :-

AM contains VO instances which contains the actual data and also supports the
Transaction Management on the Database data.

VO provides the structure whereas VO instance represents the actual data
associated to the structure.

2.1-2 Application Architecture

In ADF, we generally call the ADF implementations as ADF Applications. By default each ADF
Application contains two projects they are:

• Model Project:-

The Model Project contains all the ADF BC implementations (Business Layer) and
required Java classes (impl classes).

• View Controller Project:-

The Model layer, Controller layer, View layer implementations (ADF bindings, ADF
task flows, and ADF faces components) and required Java classes (Managed Bean)
are exists in View Controller Project.

2.1-3 Entity Objet (EO)

EO is an object created directly on a single DB table or a view. EO contains attributes and each
attribute represents an associated column. One of the attribute should be Key-Attribute. The Key-
Attribute is an attribute which is created on the Primary Key Column. If there is no Primary Key
Column then an attribute named Row-Id will be created automatically and it is treated as Key-
Attribute. All the column constraints will be appeared as Built-In Business Rules (can’t able to delete)
in the EO Business Rules section. According to Business requirement, we can create our own
(Custom) Business Rules.

EO usually has one implementation class called EOImpl java class. This EOImpl java class represents a
single row at a particular point of time. The purpose of EO is to perform all the CURD operations with
the help of Entity Based VO (UVO) EO works behind the screen as we can’t able to configure directly
in the Application Module.

2.1-4 Updatable View Object (Updatable VO)

UVO is a query which is represents a Row-set UVO are created on one or more EO’s with the help of
SQL joins with the help of UVO we can perform all the CURD operations. Each VO contains VOImpl
java class which represents a Row-set .This UVO contains attributes and is carried from EO.

2.1-5 Read only View Object (Read only VO)

RVO is a query created on one or more DB tables with the help of SQL joins. We can’t perform any
DML operations with RVO. It is only for retrieving the records. Each VO contains the Built-in
operations to support the declarative development. Some of the Built-in operations are create, First,
Last, Next, Previous, Delete etc.

2.1-6 Application Module (AM)

AM is a container of VO instances (Read-only VO or Updatable VO). The VO instances
actually represent the data. AM provides a test browser to test all the configured VO instances in the
Data Module section. AM provides Transaction Context for all its configured updatable VO instances.
Each AM contains an AM data control created under Data Controls section and AM data control is
the outcome of entire ADF BC.

2.1-7 Types of VO Attributes

Based on the below types of the parameters we can easily identify the type of the attribute
in any type of view.

Condition 1:- Calculated Attribute

• DB column mapping exist.

• The Content should be there in the SQL query.

• If the attribute is exist in the RVO.

Condition 2:- Persistence Attribute

• DB column mapping exist.

• The Content should be there in the SQL query.

• If the attribute is exist in the UVO.

Condition 3:- Calculated Attribute

• DB column mapping doesn’t exist.

• The Content should be there in the SQL query.

• If the attribute is exist in the RVO.

Condition 4:- Calculated Attribute

• DB column mapping doesn’t exist.

• The Content should be there in the SQL query.

• If the attribute is exist in the UVO.

Condition 5:- Transient Attribute

• DB column mapping exist/doesn’t exist.

• The Content is not there in the SQL query.

• If the attribute is exist in the RVO or UVO.

If the attribute is existed in query the value will be evaluated during query
processing and all the values should be available ready to display. In case of transient
attribute there is no content in the query but the values will be provided with the help of the
Expression. Expression assigned to the expression property. In case there is no large amount
of data and we are showing small amount of data to customers then it is good to go with
Transient Attribute.

2.1-8 LOV (List of Values) and View Accessor

To make the web pages effective while filling the data for foreign key attributes we should
depend upon a concept called List Of Values. In general we are going to create LOV for foreign key
attributes in UVO. The VO which provides the list (List Data source) would be key attribute VO. List
attributes represents actual content needs to be stored as a data. List UI hints represents the actual
content needs to be shown to the customer.

Step-1: Create Lov on DepartmentId attribute of Employee Updatable VO.

Step-2: Configure List data source and List attribute.

Step-3: Configure List UI hints.

NOTE :

There is no need of separate VO instances for list Data source configured in the AM data
module.

The View accessor will automatically access the required data as a list. View accessor
automatically created when we are creating a LOV.

2.1-9 View Criteria

View Criteria is a “Where” clause which makes the VO independent. On a VO (either UVO or
RVO) we can have any number of View Criteria’s. Based on a Business requirement we are going to
pull the appropriate VO/View Criteria and apply the View criteria programmatically.

View Criteria is specified into two types they are

• Static View Criteria.

• Dynamic View Criteria.

• Static View Criteria:-

Static View Criteria contains literals as part of group items. These Static Criteria’s are not
reusable and we need to create several static view criteria’s for the same condition for
different constant values. The maintenance of static view criteria are pretty difficult.

• Dynamic View Criteria:-

The Dynamic View Criteria is View Criteria which contains bind variables or dynamic
variables (instead of literals) in group Items.

The bind variable is a variable for which we are going to provide the value at runtime. The dynamic
view criteria reduces the required no of static view criteria’s on the same condition. We can set a
validation option either as required or optional for a given bind variable. If we provide validation is
required then we must provide the value for that bind variable. If we try to give null values and test
the criteria leads to a validation error.

NOTE:-

ViewObjectIMPL, Row, RowSetIterator, ViewCriteria etc.. are the framework provided java
classes which are stored in either Oracle.Jbo or Oracle.Jbo.Server packages.

Test the VCs at design time:

Click on Apply ,OK and Run AM.

Set Validation Required for a Group Item.

Result after providing null value.

2.2.1 Custom methods in AM:-

It is a container of VO Instances/View links and other AM Instances. We can configure these
instances in Data Model section of AM. When we create an AM, a Data Control with the same name
will be created automatically under the Data Controls section. Data Controls section is outcome of
the entire Business Layer (ADF BC etc.). AM supports Transaction Context with the help of its Built-In
methods (Commit & Rollback). AM provides a Test Browser called BC Test Browser/AM Tester to test
all the configured VO Instances and their Built-In methods and AM Built-In methods and custom
methods.

Custom method in AmImpl: applying Dynamic ViewCriteria

Expose the custom method as Client Interface:-

AM should contain a java class called AMImpl.java. By default it contains all getters of the
configured VO Instances. If we want to create any custom methods we can write in the AMImpl.java
class and expose those custom methods as client interface. So that the methods are visible or
accessible in Data Control section. AM maintains the DB connection information in a configuration
file called BC4J.xcfg. An AM contains another AM Instance as its child. Then this process is called
Nested AM. In this case parent AM provides Transaction Context (Commit & Rollback) for all its
configured VO Instances as well as child AM VO Instances.

3.1-1 Introduction to ADF Bindings

Oracle ADF provides ADF Bindings to form a Model layer. So that the top layers like View,
Controller layers can interact with BC layer with the help of this interface. The web pages usually
interact with the Business layer with the help of ADF Bindings. ADF Bindings are classified into two
parts

• Binding Context

• Binding Container

Each web page should have a page definition file which contains various types of bindings.
These bindings are tightly coupled with ADF Faces components to provide the required data.

3.1-2 Types of Bindings

• Tree Binding:-

When we drag and drop the particular VO Instance (from Data Control Section) on to
the web page as a table component then Tree Binding will be automatically created
in the Binding section of a page definition file.

• Attribute Binding:-

When we drag and drop a particular VO Instance on to the web page as an ADF Form
then Attribute Binding will be created for each attribute in the VO Instance.

• Action Binding :-

When we drag and drop a built-in method from a VO Instance (Create, first, next,
last etc.) and built-in methods of AM (Commit & Rollback) then Action Binding will
be created in the binding section of Binding Container.

• Method Action:-

In general we are going to write our custom methods in AM Impl java class. These
methods are exposed as client interface and we can access these from Data Control
section. If we drag and drop these on to the page either button or input parameter
form then Method Action Bindings will be created in the Page Definition.

• List Binding:-

When an attribute is have List of Values configured and it is drag and drop on to the
web page as select one choice component then List Binding will be created.

• List of Values:-

If we drag and drop the LOV attribute on to the web page as input text with the LOV.
Then LOV Bindings will be created in the Binding section of the web page.

• Boolean Binding:-

If we drag and drop the attribute on to the web page by choosing either select
Boolean check box or Boolean radio button then Boolean Binding will be created. At
that time we should provide the values for the selected state and unselected states.

3.1-3 Binding Context.

Each page or a page fragment should contain only one page definition file. The Page definition file is
also referred as Binding Container. The page/page fragment and its Binding Container mapping
along with Data control usage ids will be stored under a configuration file called “DataBindings.cpx”.
It is also referred as Binding Context.

The Binding Context will be registered by a configuration file called ADFM.xml. Simply ADF Meta
Data configuration file. This file will be loaded by a servlet called ADF Binding Filter Servlet. This
servlet is started by a disrupter called web.xml. Once the Binding Container of a running page
identified then the contents (Iterators, Query panels) will be executed automatically as these are
under executable section of a page definition file. The iterators are the mediators which interacts
with which will interact with the configured VO Instances under DC and provide the required data to
various types of bindings eg: Tree binding requires a Row set, Attribute binding requires single value
List binding requires list of data as column, Boolean binding requires a status value for a checked
state and unchecked state. The input for the Model layer is Data Control Items outcome for the
Model Layer is the Binding Container.

4. ADF Task Flows

4.1-1 Introduction to ADF TFs

Oracle ADF provides ADF Task flows to form a navigation model for the entire ADF application. ADF
Task flows are also called as ADF Page flows or ADF Controller. ADF Task flows are GUI based and we
simply develop with the help of various activities and control flows. ADF Task flows are categorized
into two types they are

• Bounded Task Flow

• Unbounded Task Flow

4.1-2 TF activities

The ADF Task flow activities are listed below

• View Activity:-

View Activity refers a web page or page fragment to hold various types of layouts,
components etc. A Bounded Task Flow accepts either pages or Page fragments as its
View Activity but not accepts a combination. An Unbounded Task Flow Only accepts
Pages as its View activity.

• Method call Activity:-

This activity is used to invoke a custom methods (at ADF BC) or a managed bean method
(at VL).

• Task Flow Call Activity:-

By using this activity a task flow can call another TF (Child TF) .A Bounded TF called by
either Bounded or Unbounded Task Flow. We can’t call an Unbounded TF from either
Bounded or Unbounded TF.

• Task Flow Return Activity:-

By using this activity the child TF returns the control to the parent TF.

• Router Activity:-

By this activity we can validate several expressions and based on the outcome
appropriate route (in a TF) will be taken.

• URL View Activity:-

This activity can make the navigation to either external pages like Google, Facebook or
any internal pages (in the Application). For this activity the accurate URL should be
provided.

• Parent Action Activity:-

This activity return some action to its Parent TF and appropriate navigation takes place.

4.1-3 ADF Task Flow Features

• TF have a support of input parameters so that we can provide a communication
between two TFs.

• TFs are GUI based.

• TF’s are reusable. A Bound TF can be called by either Bounded or Unbounded TF.

• TF have support of Data Control Scopes. The scopes are of two types.

a) Shared DC Scope
b) Isolated DC Scope

These scopes plays vital role when the parent TF and child TF are dealing with same
updatable VO Instance and have uncommitted data during navigation. At that time
the child TF has to decide from where the data needs to be collected. If child TF
configured as Shared DC Scope then the data usually taken from the parent or

calling TF. If DC Scope is configured as Isolated then the data would be taken from
the DB tables.

• TF have support of Transaction options to specify the end points for the basic
Transaction Context (Commit & Rollback).

• The possible Transaction options are

• Always begin a new Transaction(ABN)

• Always use Existing Transaction(AUE)

• Use Existing Transaction if possible(UEI)

• No controller Transaction(NCT)

• ADF TF supports security mechanism by enabling ADF TF as resources

General Process:-

 So far we have drag and drop the component on to the web page and we are simply
running pages. In general we are going to create page fragments as view activity in the bounded TF
and this page fragments contains actual layouts and components. We are going to drag and drop the
bounded TF on to the web page as a Region component and we simply run that page.

4.1-4 TF Template

TF template is a reusable component which maintains the common navigations across the Task
Flows. We can implement those navigations with the help of Wild card (*) Control flow.

Implementation of TF template: Screen I

Extend the TF template in a TF: Screen II

4.1-5 TF Data control scopes

The Data Control Scopes at the TFs are categorized into two types: Shared and Isolated.

Data control scope guides the TF on from where to pick the data. The parent/child TF working on the
same updatable VO instances and the navigation happens to the Child TF with uncommitted data
from the Parent TF. If the data control scope at Child TF configured Shared then it considers the
Parent/Calling TF changes. If the data control scope configured as isolated then the Child TF ignores
the parent TF changes and it will take the fresh data from the DB.

Configuration of Data control scope: Screen-I

Configuration of Data control scope: Screen-II

4.1-6 TF Transaction options

4.1-7 Run TF and Run TF as a dialog.

4.1-8 Dynamic Region

4.1-9 Task Flow Initializers/Finalizers

4.2-1 Managed beans in TF

4.2-2 TF Train Components

ADF TFs are supported with the Train components to implement the registration page
efficiently.

4.2-3 TF Input parameters

We can provide the communication between the two TFs with the help of TF input
parameters. Usually the parameters are configured at Child TF. The TF call activity at parent
TF provides the data for this input parameter. If the Required option is checked then the
parent TF should provide the data for the input parameters. If it is unchecked, it is optional
to send data.

Screen-I:- Configure input parameter at child TF

Screen-II:- Configure TF Call activity to pass the value to the child TF input parameter.

